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1 Executive summary 

The goal of the AI-SEE project is to realize an all-weather perception system for an automatic driving system 

(ADS) that operates 24 hours a day, 365 days a year, even in (e.g., weather-related) poor visibility 

conditions.  

The first important milestone of this task is to build up the first working version of the AI-SEE all-weather 

perception system, as a basic building block for all further developments. This deliverable describes the 

necessary and performed developments of hardware and software modules for this system. 
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2 Introduction 

The goal of the AI-SEE project is to realize an all-weather perception system for an automatic driving system 

(ADS) that operates 24 hours a day, 365 days a year, even in (e.g., weather-related) poor visibility 

conditions.  

The first important milestone of this task is to build up the first working version of the AI-SEE all-weather 

perception system, as a basic building block for all further developments. This deliverable describes the 

necessary and performed developments of hardware and software modules for this system. These are: 

In chapter 3 Sensor Suite, the realization and test of a portable sensor suite, which contains all sensors 

necessary to accomplish the task of an all-weather ADS. 

In chapter 4 Simulation of Adverse Weather Sensor Data, two simulation tools to add the disturbances of 

adverse weather on sensor data of a camera and LiDAR, respectively. 

In chapter 5 Weather Net for Detection of Prevailing Ambient Conditions, to detect the ambient conditions 

in order to adapt the sensors and the perception system to them. 

In chapter 6 Optimization of the Gated Camera, about the first step of this self-optimization by means of a 

self-supervised depth calibration. The goal of this work is to increase the range and accuracy of depth 

measurement with this camera. 

In chapter 7 Robust 3D Detector for Adverse Weather based on a Gated Camera, a novel approach to detect 

objects with high accuracy even in difficult visibility conditions, both at short and long range, which 

outperforms current state-of-the-art-methods based on conventional sensors. 
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3 Sensor Suite 

3.1 Design of the portable reference sensor system 

In order to be able to start with the software developments in an early project phase and also to be able to 

clarify questions regarding sensor development and design at an early stage, a portable sensor unit was 

designed and set up in the AI-SEE project.  

This sensor unit makes it possible to carry out measurements and data acquisition campaigns geared to the 

target structure at an early stage of the project and to simulate the target structure on key issues. At the 

same time, it serves as a reference system for the target setup. The portability of the system makes it 

possible to dismantle the unit from the test carrier with reasonable effort, to send it by mail to distant 

regions for measurement campaigns, and then to quickly reassemble and use it on another test carrier. In 

this way, even necessary measurement campaigns overseas (e.g. weather chamber test in Japan or the 

USA) can be realized with reasonable effort. 

The portable sensor unit consists of a modern high-resolution MIMO RADAR from Bosch, three RGB stereo 

camera pairs, a gated camera stereo pair, a LiDAR and a weather station, a mobile road condition sensor 

and an inertial measurement unit (IMU) to measure the local environmental conditions. The portable 

sensor setup is shown in Figure 3.1.  The sensors installed in it are explained below: 

 

Figure 3.1: Portable sensor unit with three RGB stereo cameras, one gated stereo camera, one MIMO 
RADAR, one LiDAR and one weather station. 

3.1.1 Stereo cameras 

In total, we use three stereo camera systems for different purposes. The first is a current series system 

based on two on-semi AR0230 cameras with 1920 × 1024 resolution, 20 cm base width, and 12-bit 

quantization. The cameras run at 30 Hz and are synchronized for stereo imaging. A field of view of 39.6° is 

achieved with Lensagon B5M8018C optics with a focal length of 8 mm. This camera was chosen to provide 

data acquisition that matches the available 200 TB of the predecessor project DENSE dataset, allowing 

faster iteration times without troublesome domain differences. The second imaging system chosen was the 

on-semi AR0820 with a resolution of 3840 x 2160, a wide base width of approximately 1 m, and 12-bit 

quantization to show maximum capabilities. The camera runs at 15 Hz and the images are synchronized. 
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The mounted DSL162A lenses allow an aperture angle of 35°. Finally, a stereo Ximea CB120CG-CM-X8G3 

with a wide base is installed. It provides 4096 x 3072 resolution and 12-bit quantization. The individual 

cameras are about 1 m apart. The optics used is a Walimex pro 35/1.4 DSLR Canon EF. This allows a 35° 

angle of view. The camera is operated at a frequency of 10-20 Hz. Thanks to its large sensor (APS/C), the 

latter camera enables the capture of high-resolution and low-noise ground images with higher photon 

sensitivity for simulation purposes.  

3.1.2 Gated Stereo Camera 

Gated images are acquired in the NIR band at 808 nm using a BrightwayVision BrightEye stereo camera 

operating at 120 Hz with a resolution of 1280 × 720 and a bit depth of 10 bits. The camera provides a field 

of view of 31.1°, similar to the stereo cameras mentioned above. Gated cameras are based on time-

synchronized camera flood-lit flash laser sources [1]. The laser pulse emits a variable narrow pulse and the 

cameras capture the laser echo for a defined range of distances. This requires very precise camera 

synchronization and aperture control. This technique allows to exclude disturbances outside the depth 

range of interest, e.g. caused by spurious reflections from fog particles in front of the range of interest. A 

result image is generated by superimposing interference-reduced depth images. Compared to images from 

a standard camera, this is significantly reduced in interference and allows good usable images to be 

generated even in heavy fog, rain or snow. A depth map of the image can be generated from the 

overlapping distance section images (depth slices), which in terms of resolution and depth accuracy cannot 

currently be achieved by any other environment detection sensor used in vehicles. A new feature added in 

AI-SEE is the design of the gated camera as a stereo camera. This enhancement will allow to further 

increase the noise rejection and to significantly increase the accuracy and robustness of the depth map.  

The necessary synchronization of the camera pair is not trivial, since this must be done with high precision 

in the nano-second range and can therefore only be achieved by a complex reprogramming of the control 

software on the FPGA of the camera.   

3.1.3 MIMO RADAR 

An "A-sample" version of Bosch's high-resolution 4D MIMO RADAR was installed for RADAR acquisition. The 

RADAR uses a proprietary frequency-modulated continuous-wave (FMCW) RADAR at 77 GHz with an 

angular resolution of 2°, an aperture angle of 100°, and ranges of up to 120 m. The RADAR provides 

position and velocity measurements at 10-20 Hz. 

3.1.4 LiDAR 

An internally rotating Velodyne VLS128 LiDAR sensor is mounted on top of the left measurement box in the 

direction of travel. The sensor operates in the NIR band at 905 nm and can provide two echoes (the 

strongest and the last) at 5-20 Hz. The sensor provides a non-uniform sampling pattern with increased 

density for upright objects on the horizon. The sensor has a 360° field of view and a range of up to 200 m. 

3.1.5 Sensor technology to detect ambient conditions 

To capture environmental conditions, we use three measurement systems in our sensor setup: we use an 

Airmar WX150 weather station to measure temperature, wind speed and humidity in the local 
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environment. To measure road conditions (water, ice, shee thickness, ground temperature, etc.) we use the 

Mobile Detector MD30 from Vaisala. Since this must be NEAR (<50cm) the road surface for the 

measurements, it is mounted separately on the low-lying towing lug of the test vehicle. To obtain accurate 

ego-motion data, the sensor unit is also equipped with an XSENS inertial measurement unit (IMU). 

The portable sensor unit also includes a portable evaluation unit by means of which the data can be read 

out, processed and stored. This evaluation unit represents the vehicle computer and, like the sensor unit, 

can be ported to a new test vehicle at reasonable expense (e.g. for overseas trials). During the reporting 

period, the sensors of the portable sensor unit were also integrated into the framework of the portable 

evaluation unit in terms of software technology. More details can be found in Deliverable D2.2 "Individual 

sensor systems and interfaces". 

3.2 Calibration Procedure 

In order to be able to process the data of the sensors used in the reference sensor system for an event 

together, these must be brought to overlap in time and space in the evaluation area. The temporal overlap 

is usually achieved by a time synchronization of the recording times. How we realized this for our reference 

system is described in Deliverable D2.2 "Individual sensor systems and interfaces". To achieve spatial 

overlap, transformation matrices (for transforming e.g. a sensor coordinate system into the coordinate 

system of a neighbouring sensor or into a reference coordinate system of the vehicle) are computed in so-

called sensor calibration procedures. 

The calibration procedure consists of two parts - the camera intrinsic calibration, which provides the 

parameters for the distortion of each camera, and an extrinsic calibration which computes the positioning 

of the cameras (in the world coordinate system) with respect to each other.  

The intrinsic calibration of the stereo cameras is performed by detecting checkerboards with pre-defined 

field size using the approach of [2]. An example of this process is shown in Figure 3.2. The calibration 

targets are placed at different positions to cover a wide range of scale, position and yaw angle to the 

sensor. This allows optimization of the per-camera optical distortions using the Plomb camera distortion 

model. The process is performed jointly for each stereo image pair. Our calibrations achieve a maximum 

error of about 4 pixels for a 4k stereo imager. 

 

Figure 3.2: Intrinsic stereo calibration: The chessboard is recorded with the stereo camera at different 
distances and orientations with the stereo camera pair. From this information, the transformation matrix 
can be calculated via "least-square" method 
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Afterwards, the camera extrinsic can be determined. This process was implemented to calibrate each 

camera to the LiDAR sensor. From the calibration process we implemented, a global rigid-body 

transformation is obtained from each optical sensor to the LiDAR sensor. Using the TF-Tree implementation 

in the ROS-framework (Robot Operating System, see https://www.ros.org/), all further transformations 

between the optical sensors can be easily extracted. 

To register the very dense LiDAR reference point clouds on the checkerboards to the camera coordinate 

systems (extrinsic calibration), multiple planar checkerboard targets of known size are placed in the scene. 

The camera positions are extracted by running classical checkerboard detection pipelines. Using the 

extracted coordinate pairs from the coordinated LiDAR position and the camera pixels in the images, 

extrinsic calibration with respect to the LiDAR coordinate system is performed by solving the n-point 

perspective problem using Levenberg-Marquardt nonlinear least-squares optimization [3] [4]. For the 

camera LiDAR calibration, six transformation parameters need to be computed, namely the roll, pitch, yaw, 

x, y, and z transforms. Figure 3.3 illustrates the process. 

 

Figure 3.3: Extrinsic camera-to-LiDAR calibration pipeline. The checkerboard is detected multiple times in 
both the image and the LiDAR point cloud. This information is used to determine the transformation 
between camera and LiDAR via a least-square optimization approach. 
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4  Simulation of Adverse Weather Sensor Data 

While adverse weather conditions that include severe scattering are heavily underrepresented in existing 

training and evaluation datasets [5] [6], these rare scenarios are a significant contributing factor for fatal 

automotive accidents [7], as a direct result of the vision impairment faced by the human drivers.  

Furthermore, adverse weather conditions follow a long-tail distribution where such environment conditions 

are rarely encountered during day-to-day driving, making data collection, training, and evaluation 

challenging [8]. 

Due to these reasons, it is of great interest to device generative models capable of artificially creating 

adverse weather effects for the different input sensing modalities, such as RGB camera or LIDAR. In fact, 

such approaches help alleviating the data bias against adverse weather conditions, hence enabling the 

development of safer and more robust perception algorithms. In a nutshell, these generative models can 

help to increase the available training data significantly at low cost, in order to improve the performance of 

perception modules of ADS in real-world adverse weather scenarios.  

To this end, as part of AI-SEE, we have begun developing model-based simulation methods for augmenting 

severe weather on sensor data, which we describe in more detail below. Please note that only these 

simulations allow us to develop efficient methods for better perception in adverse weather. 

4.1 Fog Simulation Model for Cameras 

To simulate fog into images from camera sensors, physics-based approaches have been proposed. The 

basic theory for these procedures lies in the Koschmieder model [9]. This model divides the effects of fog 

into two parts: attenuation and airlight. Attenuation describes how much light is lost due to global 

scattering, while airlight describes the global light intensity and the value, the light scattering converges as 

the distance increases.  

Overall, the disturbed image 𝐼𝑓𝑜𝑔𝑔𝑦 can be calculated from a clear weather images 𝐼𝑐𝑙𝑒𝑎𝑟 at pixel position 𝑥 

as follows. 

𝐼𝑓𝑜𝑔𝑔𝑦(𝑥) = 𝑡(𝑥)𝐼𝑐𝑙𝑒𝑎𝑟(𝑥) + (1 − 𝑡(𝑥))𝐿. 

Here, 𝑡(𝑥) is the depth-dependent transmissivity and 𝐿 is the global ambient component, following [10]. 

The transmissivity coefficient is calculated by    

𝑡(𝑥) = 𝑒−𝛽𝑑(𝑥), 

where 𝑑 is the scene depth at pixel position 𝑥 and 𝛽 is the strength of fog scattering.  Here, the fog 

scattering can be easily calculated from a visibility 𝑉. This visibility is defined as the distance at which 95% 

of all available light has been attenuated:   

𝑉 = −
𝑙𝑛(0.05)

𝛽
. 

Following this model, it is possible to generate a foggy image from a clear weather one in six steps. 

These steps are as follows: 
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1. Estimation of depth from a monocular/stereo camera image for (𝑥). Several algorithms have been 

proposed for predicting the depth of a scene using both classical and deep learning approaches. Some 

of the most recent approaches include PSMNet [11] or LEAStereo [12]. 

2. Refine depth by filtering inconsistent data and inferring depth anomalies.  

3. Calculation of transmittance from depth: 𝑡(𝑥) = 𝑒−𝛽𝑑(𝑥).  

4. Further refinement of transmission maps using a guided filter. Estimation of global airlight using the 

dark channel prior method [10].  

5. Final application of the equation: 𝐼𝑓𝑜𝑔𝑔𝑦(𝑥) = 𝑡(𝑥)𝐼𝑐𝑙𝑒𝑎𝑟(𝑥) + (1 − 𝑡(𝑥))𝐿. 

To further increase the realism of this approach, the propagation of active light sources present in the 

scene can be modeled in the foggy picture as well. Active light sources are, e.g., headlights from oncoming 

cars or traffic lights. This is done in three main steps. 

First, the light sources in the scene are identified. This is currently done by applying a top-hat1 filter to the 

radiance channel and filtering all objects above the target value for air illumination (calculated in the 

previous step 5).  

Second, the propagation (in the scattering media) of these light sources is modelled. In [13], this is achieved 

using a simple Gaussian blurring, but more complex and accurate solutions are possible. Monte Carlo 

simulation is the most accurate alternative, but it is computationally expensive and impractical for large 

scale processing. A faster but still physically accurate alternative is to use an analytical solution for isotropic 

(and cone-shaped) point sources in homogeneous media. Following such an approach, the scattered light 

on the pixel can be computed by the integral 

𝑉 =  𝑃 ∫ 𝑅(𝜇𝑠, 𝜇𝑎 , 𝑟, 𝑔, 𝒓, 𝒔`)𝑠`2

𝜎

 

where 𝑅 is the scattered radiance of an isotropic point source with a power of unity, 𝜇𝑎 and 𝜇𝑠 are 

respectively the absorption and scattering coefficient, 𝑔 is the anisotropy factor of the phase function, and 

𝑟 is the module of the position of the detector. It is then possible to obtain an approximation using the 

average direction 𝑠 of the solid angle 𝜎 (and for small distances or tenuous fog the scattered radiance can 

be approximated by the single scattered radiance) 

𝑉𝑎 =  𝐼𝑐𝑙𝑒𝑎𝑟4𝜋𝑟2𝑅(𝜇𝑠, 𝜇𝑎 , 𝑟, 𝑔, 𝒓, 𝒔)𝜎 

So that for each pixel i of the image, the light can be calculated as 

𝑉𝑛𝑒𝑖𝑔ℎ,𝑖 =  ∑ 𝑉𝑎(𝒓𝑖, 𝒔𝑗)
𝑗 ∈𝑙𝑖𝑔ℎ𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑗 ≠𝑖

  

                                                           

1 The name Top-hat filter refers to several real-space or Fourier space filtering techniques. The name top-hat originates 
from the shape of the filter, which is a rectangle function, when viewed in the domain in which the filter is constructed. 
Source Wikipedia. 
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Finally, the computed light sources effect is then added to the image output from the previous step 6, 

hence obtaining the final fogged image 

𝐼𝑓𝑜𝑔𝑔𝑦 𝑙(𝑥) = 𝑡(𝑥)𝐼𝑐𝑙𝑒𝑎𝑟(𝑥) + (1 − 𝑡(𝑥))𝐿 + 𝑉𝑠𝑒𝑙𝑓 𝑙𝑠 + 𝑉𝑛𝑒𝑖𝑔ℎ . 

Figure 4.1 illustrates the clear weather reference to the artificially created fogged image. Both the 

improved light scattering model as well as the baseline model are shown. Clearly, the improved light 

scattering helps to generate a more realistic image. 

 

Figure 4.1: Light modelling, from left to right: original (clear weather) image, fogged image (improved light 
scattering modelling), fogged image (baseline). By modelling the lights, the sources of illumination in the 
image are represented much more realistically. Instead of unnaturally heavily smeared lights represented 
with too large a corona (image on the right), they are now represented more sharply and in greater detail, 
and the red light of the taillight reflected from the road is retained (image in the middle). 

With respect to other adverse weather conditions, the Koschmieder equation is also used to model the 

haze effect visible in rainy conditions, caused by the amount of drops that are too far away and projected 

onto an area smaller than one pixel. In fact, since this situation occurs as soon as the particles are a few 

meters away from the camera, this adverse weather effect dominates the scene. The modelling equation 

remains the same as before, with the only change in the attenuation coefficient given here by the 

precipitation rate instead of the thickness of the fog.  

In addition to the rain-like fog, the individual raindrops must also be rendered with larger size. Ray casting 

would allow accurate modeling of the droplet photometry, but this involves very high processing costs and 

requires complete knowledge of the geometry and materials of the scene.  This is not feasible in the real 

world. Therefore, this task is currently solved using a raindrop appearance database and an environment 

map around each drop.  Finally, once the position and photometry are computed, each droplet is inserted 

into the image, also taking into account the defocus effect and exposure time of the camera.  

With the development of the improved fog simulation, we have taken a first step towards improved 

perception of road users in fog. An evaluation to what extent we can achieve an improvement of the 

detection results is the goal of future work. 

4.2 Spray Simulation Models for LiDAR 

Currently, object detectors based on LiDAR rank first among different datasets [14] [15]. Compared to other 

sensors however, LiDAR sensors suffer severely from adverse weather affects, see, e.g. [16] [17].  In 

particular, wet roads lead to significant problems in LiDAR-based object detections. The reason for this is 

twofold. First, a water film on the road will cause an attenuated laser echo. Thus, the resulting point cloud 

has only a limited number of ground points, which directly affects the performance of the object detector.  
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Second, the wet road will cause spray from other vehicles.  The laser pulse is backscattered by whirled up 

water droplets that are part of the spray plumes coming from other vehicles. This is especially problematic 

for highway driving scenarios, where the ego vehicle follows another vehicle with high velocity.  Such 

scenarios will cause point clouds with heavy spray artefacts. The object detector subsequently mistakes 

these artefacts as vehicles resulting in a large number of false positives. 

Similar to the previously described methods for cameras, wet road effects can be simulated and 

subsequently augmented onto clear weather data. This augmentation can then be used during training to 

improve performance in real-world wet road scenarios. In the following, the methods for simulating missing 

ground points and spray affects are discussed. 

4.2.1 Missing ground points 

As mentioned previously, the water film on the ground leads to heavily attenuated laser echos from the 

ground. In other words, the measured intensity of the ground points is too small for being differentiated 

from sensor noise. For modelling the attenuated intensities, we rely on a geometrical optical model that 

considers individual rays emitted by the LiDAR. From Figure 4.2, an intuitive explanation for the attenuated 

intensities can be gained. When the emitted ray strikes the surface of the water film, part of the ray is 

reflected into the air, the other part is transmitted into the water film. Inside the water film, the ray is 

repeatedly reflected on the surface of air and water film as well as water film and ground. Consequently, 

multiple increasingly attenuated rays traverse back to the sensor. The intensity registered at the sensor is 

then determined from the sum of all received rays. 

The process of transmission and reflection can be described physically accurate by using a combination of 

Snell’s Law and Fresnel equations. Using Snell’s law, the output angle 𝛼𝑜𝑢𝑡 can be computed with  

𝑠𝑖𝑛 𝛼𝑜𝑢𝑡 = 
𝑛𝑖𝑛

𝑛𝑜𝑢𝑡
𝑠𝑖𝑛 𝛼𝑖𝑛, 

where  𝑛𝑜𝑢𝑡 and 𝑛𝑖𝑛 are the respective refractive indices, and 𝛼𝑖𝑛 is the angle of the emitted laser ray. The 

computed angle is then used within the Fresnel equations to determine the relative amount 𝑇𝑡𝑜𝑡𝑎𝑙  of the 

emitted power 𝑃𝑇 traversing back to the sensor. For a detailed derivation the reader is referred to [17]. In a 

nutshell however, the Fresnel equations describe the relation between the amounts of reflected and 

transmitted power. This can be leveraged to compute 𝑇𝑡𝑜𝑡𝑎𝑙 as 

𝑇𝑡𝑜𝑡𝑎𝑙 =
𝑇𝑎𝑖𝑟𝜌0𝑇𝑤𝑎𝑡𝑒𝑟

1−𝜌0𝑅𝑤𝑎𝑡𝑒𝑟
 , 

where  𝑇𝑎𝑖𝑟, 𝑇𝑤𝑎𝑡𝑒𝑟, 𝑅𝑤𝑎𝑡𝑒𝑟, 𝜌0 are transmitted power in air and water, reflected water, and road 

reflectivity in dry conditions, respectively.  

 

Figure 4.2: Geometrical Optical Model for modelling wet ground points 
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Based on these relationships, an algorithm for simulating missing ground points is designed. From a high 

level perspective, the algorithm can be grouped in 3 steps. First, the points in the dry reference point cloud 

that belong to the ground are identified. For this, we rely on a ground plane assumption and estimate 

points that belong to the ground using the RANSAC algorithm [18]. Second, the “wet” intensities of the 

identified ground points are calculated. This can be done as a function of 𝑇𝑡𝑜𝑡𝑎𝑙 and the “dry” intensities 

from the dry reference point cloud. Finally, only points above a certain noise threshold are kept. 

A qualitative result is presented in Figure 4.3, where a dry reference point cloud is compared to a point 

cloud captured from a real wet road and a simulated wet road. It can be seen that the point cloud from a 

simulated wet road matches well with the real wet road one. 

4.2.2 Spray Simulation 

For simulating spray, we rely on an empirical model that is based on an extensive data analysis. This model 

incorporates two general observations. 

1. Spray points are not uniformly distributed, but form clusters 

2. The number of spray points depends on object velocity, object class, distance to object, and water film 

height. 

 

Figure 4.3: Point clouds from a dry test track (top), a watered test track (middle) and simulated wet road 
(bottom). 

Intuitively, it can be seen that these hypotheses are true, as visualized, e.g., in Figure 4.4. However, an 

extensive number of experiments on a test track were conducted to validate the hypotheses and the 

subsequent model. For testing the first hypothesis, the DBSCAN2 clustering algorithm is applied to point 

clouds from scenarios, where the ego vehicle is following vehicles of different sizes and different velocities. 

It was found that over 80% of the spray points can be sorted into clusters, as, e.g., also true for the example 

given in Figure 4.3. Due to several experiments with a variety of different sized cars at different velocities, 

the second hypothesis was also confirmed. However, more detailed results would be beyond the scope of 

this chapter.  

                                                           

2 DBSCAN is a data mining algorithm for cluster analysis developed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and 
Xiaowei Xu. It is one of the most cited algorithms in the field. The algorithm works density-based and is able to detect 
multiple clusters. Wikipedia 
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Figure 4.4: Real point cloud captured from a vehicle in 50m distance with an ego-vehicle velocity of 100 
km/h 

The hypotheses are subsequently used to design a spray simulation method. This method is schematically 

illustrated in Figure 4.5. As input, the point cloud as well as positions and velocity of all ground truth 

objects, e.g. other vehicles, are required. Based on this, clusters are generated. The clusters are assumed to 

be spherical. The cluster radius is sampled from a lognormal distribution that was fitted to real-world 

measurements. The number of newly generated clusters is a random process depending on the water film 

height and the velocity of the ground truth vehicle. The generated clusters are then appended to a global 

vector that is keeping track of every generated clusters. After appending new clusters, the already existing 

clusters are updated. This implies removing clusters with an age above a certain threshold. Furthermore, 

their initial velocity and the corresponding change in position is considered. Additionally, effects from wind 

are considered. The updated list of clusters is then used to generate the spray artefacts in the dry reference 

point cloud. For this, it is checked if a beam intersects with a spray cluster. With a certain probability, a 

point is added to the location of the closest intersection of a beam and cluster. Clearly, the intensity of this 

point can vary significantly. Thus, the intensity of the dry reference point belonging to this beam is 

attenuated in order to assign a realistic intensity to spray points. 

 

Figure 4.5: Structure of spray simulation. Point cloud and ground truth objects are inputs for every time 
step. A list of aggregated spray clusters is generated over time. Based on beam interactions with these 
clusters, the augmented spray point cloud is outputted. 
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The output of the simulation method is illustrated in Figure 4.6. Here, a point cloud affected by real-world 

spray is compared to a point cloud outputted by the spray simulation method. It can be seen that the 

simulated spray closely approximates the real-world spray. Especially, the generated clusters match well 

with the real-world reference. 

Currently, we are using this spray simulation to make LiDAR-based detection techniques more robust to 

spray impacts. Initial results are very promising. We expect to be able to present reliable results in the near 

future, for example in the next deliverable D4.2. 

 

Figure 4.6: Comparison of point cloud affected by real-world spray (top) with a point cloud augmented with 
simulated spray (bottom). 
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5 Weather Net for Detection of Prevailing Ambient Conditions 

It is essential for an automated driving system (ADS) to be able to recognize environmental conditions such 

as time of day, weather, road conditions, and road infrastructure  type (highway, suburban, urban) in order 

to either adapt to them or, in the event of a possible overload, to delegate the driving task back to the 

driver in good time. 

In AI-SEE, we are developing a deep neural network for this purpose, which we call Weather Net for short. 

The data preparation, the learning model, and the quality evaluation of this weather network that we 

developed are described in the following: 

5.1 Dataset Preparation 

First, we refine the dataset provided in [8] from the predecessor project DENSE. The dataset covers 

different weather and illumination scenarios and was acquired by over 10,000 km of driving in Northern 

Europe providing 12,997 annotated key frames. An easy extension is to also include the neighboring frames 

providing the same ambient weather conditions leading to 120,000 frames increase dataset size by an 

order of magnitude. 

This dataset already included a fine-grained annotation for day light, road condition and scene setting, and 

ambient weather (e.g. fog, rain, snow). However, these annotations were not yet fine enough to produce 

satisfactory classification results for our weather network.  

To achieve better environment classification results, the granularity of the annotation had to be refined 

according to the label hierarchy shown in Figure 5.1, into now seven categories. This avoided previously 

occurring misclassifications and ambiguities in the underlying data. In particular, the weather category has 

been divided into precipitation and fog. This is due to the fact that individual snow, rain, or hail particles are 

only visible over a limited distance, so they cannot be distinguished above a distance of 8 m due to the 

limited camera resolution. Therefore, in most images, obstacles at great distances are dominated by fog-

like effects. 

 

Figure 5.1: Newly proposed label hierarchy for weather classification. 
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The Daytime class was split into the Daytime and Twilight class because the change in illuminance is a 

continuous process with an intervening twilight state. When introducing the twilight state, this translation 

can be accounted for by considering dawn or sunrise. The Tunnel class was separated from the 

Infrastructure class because it was no longer possible to distinguish between city, suburbs, or highways for 

tunnel exits. Road condition sometimes leads to ambiguities, as previously only the drivable way was 

annotated without considering the sidewalks. However, snow-covered sidewalks can confuse the network 

when the drivable path is dry. To alleviate this problem, the condition of the sidewalk was additionally 

annotated. 

5.2 Learning Model 

Next, the deep learning model, learning the prediction of the presented label hierarchy, is introduced.  It is 

based on a multi-output classification task. The framework is visualized in Figure 5.2. It is based on a single 

backbone using the EfficientNet architecture [19] and six different fully-connected-layers (FC-layers) to 

recognize weather and visual conditions from street-level images. The joint EfficientNet backbone enables 

sharing similar features between different classification tasks, reducing computation time and enables to 

learn feature richer representations as the learning is supervised by multiple classification tasks. Features 

for road coverage might be equally important for the recognition of the scattering media. This is unlike 

previous work [20] where independent neural networks with large backbones, e.g., ResNet50, were learned 

for a coarse weather classification task.   

 

Figure 5.2: Used EfficentNet architecture for weather detection. 

The main building block of this network consists of MBConv to which squeeze-and-excitation optimization 

is added. MBConv is similar to the inverted residual blocks used in MobileNet v2 [21]. These form a shortcut 

connection between the beginning and end of a convolutional block. The input activation maps are first 

expanded using 1x1 convolutions to increase the depth of the feature maps. This is followed by 3x3 Depth-

wise convolutions and point-wise convolutions that reduce the number of channels in the output feature 

map. The shortcut connections connect the narrow layers whilst the wider layers are present between the 

skip connections. This structure helps in decreasing the overall required number of operations and the total 

model size. 
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Each FC-layer is instead composed of two dense layers where the number of neurons in the last output 

layer depends on the number of classes, for six different outputs. 

The framework takes single-images as input. It does not require pre-defined constraints such as the camera 

angle, area of interest, etc.  

Due to the usage of this framework, with an order of magnitude of few parameters, the computational cost 

is dramatically reduced. Consequently, the proposed framework can be effectively implemented in real-

time environments to provide decisions on demand for autonomous vehicles with a quick and precise 

detection capacity. 

The whole architecture is trained based on the backpropagation of error with the Adam optimizer [22]. 

Data augmentation techniques have been applied to enhance the training of each model. The dataset is 

augmented by rescaling, shearing, horizontal flips, and zooming. These techniques are commonly used to 

avoid overfitting and improve model performance. 

Figure 5.3 shows some examples of the outputs generated by the neural network. Future implementations 

should use time series images in combination with data obtained from LiDAR to increase the accuracy of 

detection of individual snow or rain particles. This is because through the LiDAR point cloud it is possible to 

see particles that are not visible through RGB cameras. 

 

Figure 5.3: Qualitative results of weather classification network 

5.3 Evaluation of the Weather Net 

To evaluate the multiclass classifier, we use the five well-known metrics: 

● Accuracy 

● Recall 

● Precision 

● F1-Score (is the geometric mean of precision and recall). 

● AUPRC (Area under precision-recall curve or average precision) 



   

Deliverable D4.1 / 08.07.2022 / version 1.0 24 

In this way, the performance of different models can be compared or the behaviour of a model can be 

studied by changing the hyper parameter values. Based on a test dataset of 36,000 images, we obtained 

the promising evaluation shown in Table 5.1. 

Table 5.1: Five metrics for the evaluation of the quality of the weather net. 

CATEGORY ACCURACY PRECISION RACALL F1-SCORE AUPRC 

Daytime 0.99 0.99 0.99 0.99 0.99 

Precipitation 0.89 0.88 0.89 0.88 0.89 

Fog 0.93 0.93 0.93 0.93 0.97 

Road Condition 0.84 0.84 0.84 0.84 0.93 

Roadside Condition 0.85 0.83 0.85 0.83 0.89 

Scene Setting 0.92 0.92 0.92 0.92 0.95 
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6 Optimization of the Gated Camera 

In the previous DENSE project, the gated camera proved to be the most robust in adverse weather of all the 

cameras and LiDARs investigated. Even under adverse weather conditions, clear images can still be 

generated with a gated camera and, in addition, a pixel-precise depth maps can be calculated for these 

images, in a quality which are currently not achieved by any LiDAR in terms of resolution. Because of its 

high potential, it is worthwhile to further improve the gated camera. The goal in AI-SEE is that the gated 

camera can independently (self-supervised adaptivity) make the optimal settings of all parameters so that it 

performs optimally under the prevailing environmental conditions. A first step in this direction is the Self-

Supervised Gated Depth Estimation we have developed, i.e., in a sense, the automatic self-calibration of 

the gated camera with respect to depth measurement. 

Before discussing this Self-Supervised Gated Depth Estimation, we explain for a better understanding of 

this method the elementary components of a gated imaging system and the theoretical principals behind 

the sensing technology. Furthermore, we present approaches for deriving depth maps from multiple gated 

images and give overview of the corresponding ongoing work our Self-Supervised Gated Depth Estimation 

approach. 

6.1 Principle of Gated Imaging 

A gated camera is an active imaging system that consists of an amplitude-modulated source flood 

illuminator and a synchronized camera with gated exposure. In contrast to a LiDAR system, which directly 

measures the Time-of-Flight (ToF) by finding the peak of the reflected laser pulse, a gated camera system 

only integrates a part (depth slice) of the laser pulse. While finding the peak of a reflected laser pulse 

requires a very fast and sensitive sensor, a gated camera is a cost-sensitive standard image sensor with a 

delayed exposure that estimates the ToF by using multiple integrations with varying delay between laser 

illumination and camera exposure. The synchronization of the laser illumination and the exposure time of 

the gated camera, allow integrating only photons from a certain depth range in the scene on the CMOS 

imager, so called depth slices. Disturbing photons outside this depth range, e.g. caused by reflections of the 

laser light on fog particles, are not recorded and suppressed in this way. Thus, in contrast to standard RGB 

cameras and LiDARs, clear and undisturbed images can still be obtained even in foggy environments (see 

Figure 6.1). Another advantage of the gated camera is that a neural network can be used to generate a 

high-resolution pixel-precise depth map from the overlapping depth slices of a scene, as shown in Figure 

6.2. 
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Figure 6.1: Comparison of standard RGB, gated imaging, and LiDAR sensing in clean and foggy conditions. 
While pedestrians are still clearly visible in the image of the gated camera, either the RGB camera or the 
LiDAR does not perceive them. 

 

Figure 6.2: With the RangeIntensityProfiles of the overlapping areas, we can calculate a depth image with 
an accuracy of 5 % using a neural network. 

The underlying physical conditions that lead to these properties of a gated camera are explained in more 

detail in the following: 

The distance-dependent intensity values of a gated image can be described by so-called range-intensity-

profiles (RIP). These profiles result from the convolution of the temporally modulated camera gate 𝑔 and 

the laser pulse profile 𝑝. 

We assume a rectangular laser pulse function 𝑝(𝑡) with duration 𝑡𝐿 and rectangular gating function 𝑔(𝑡) 

with duration 𝑡𝐺. Considering a single pixel, which captures reflected photons of a point at a certain 
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distance 𝑟, the corresponding photons require a round-trip time of  
2𝑟

𝑐0
 to reach the camera after being 

emitted by the source. This means we receive the signal 𝑝(𝑡 −
2𝑟

𝑐0
) at the sensor. The shutter of the sensor 

opens after a delay of 𝜉 and remains open for the gate duration 𝑡𝐺. During the gating time 𝑡𝐺, all incident 

photons get integrated on the CMOS sensor. As such, the intensity value 𝑍(𝑟) of the considered pixel is 

defined by the convolution of the gate pulse 𝑔(𝑡 − ξ) and laser pulse 𝑝 (𝑡 −
2𝑟

𝑐0
): 

𝑍(𝑟) = 𝛼𝐶(𝑟) =  𝛷𝜄 ∫ 𝑔(𝑡 − 𝜉)𝑝(𝑡 −
2𝑟

𝑐0
)𝛽(𝑟)𝑑𝑡

∞

−∞

 

where 𝛷 denotes the reflectivity, and the laser illumination ι defines the maximum amplitude of the laser 

pulse. The reflectivity 𝛷 depends on the spectral distribution of the scene illumination, the reflectance of 

the scene surfaces, and the atmosphere’s water vapor content. The atmospheric effects, which are 

independent of object surfaces, are modeled by 

𝛽(𝑟) =
𝑃𝑙𝑎𝑠𝑒𝑟 𝜏𝑜𝑝𝑡𝑖𝑐𝑠 

4𝜋𝑟2 𝑡𝑎𝑛 (
𝜃𝐻
2 ) 𝑡𝑎𝑛 (

𝜃𝑉
2 )

𝜌2

𝐹𝑛𝑢𝑚
2

𝜆

ℎ𝑐0
𝑒−2𝛾𝑟 

with laser power Plaser, horizontal/vertical field of illumination 𝜃𝐻/𝜃𝑉 , pixel pitch ρ, aperture 𝐹𝑛𝑢𝑚
2 , 

wavelength 𝜆, Planck constant ℎ, optical transmission 𝜏𝑜𝑝𝑡𝑖𝑐𝑠, and atmospheric attenuation coefficient 𝛾.  

During daytime, this model is incomplete due the high spectral solar power within the NIR band that leads 

to a significant number of unmodulated photons captured as an ambient light Λ component. Thus, the 

equation from above gets extended to: 

𝑍(𝑟) = 𝛷𝜄 ∫ 𝑔(𝑡 − 𝜉)𝑝 (𝑡 −
2𝑟

𝑐
) 𝛽(𝑟)𝑑𝑡 + 𝛷𝜅 ∫ 𝑔(𝑡 − 𝜉)𝑑𝑡 

∞

−∞

  
∞

−∞

 

=  α𝐶(𝑟) + Λ 

where 𝜅 denotes the ambient light falling on the considered point and 𝛷𝜅 indicates the level of reflected 

light reaching the sensor. Assuming constant ambient light during the gating time 𝑡𝐺, the captured ambient 

light results in Λ = 𝛷𝜅 ∫ 𝑔(𝑡 − 𝜉)𝑑𝑡
∞

−∞
. 

After read-out, the final measurement 𝑍(𝑟) for each pixel location is obtained by 

𝑍(𝑟) =  𝛼𝐶(𝑟) + 𝛬 +  𝜂𝑔 +  𝜂𝑝 

where 𝜂𝑝 models the signal-dependent Poisson photon shot noise and 𝜂𝑔 Gaussian read-out noise [23]. To 

increase the SNR, multiple laser pulses are integrated on the sensor before read-out. Three example RIPs 

covering different ranges are visualized in Figure 6.3. 



   

Deliverable D4.1 / 08.07.2022 / version 1.0 28 

 

Figure 6.3: A gated camera consists of a synchronized gated camera and a flash pulsed illumination source 
(d). Using different exposure gates, the image formation can be described with different range-intensity 
profiles Ci, which are plotted depending on distance r. An overlay of all exposures is visualized in (b) and 
individual range intensity profiles are shown in (f), (g), and (h). Ambient light component is shown in (c) and 
a corresponding RGB capture of the scene is illustrated in (a). 

6.2 3D Scene Reconstruction with Gated Images 

This section describes several state-of-the-art methods for 3D scene reconstruction with gated images. 

From literature, four main approaches can be distinguished, namely time slicing [24] [25] , super-resolution 

depth mapping [26] [27], gain modulation [28] [29], and neural network based methods [30] [31]. 

6.3 Time Slicing 

The time slicing method introduced by Busck et al. [25] [24] is based on so-called gated delay profiles 

(GDP). In contrast to the RIPs, the GDPs describe the pixel intensity of an object at a certain distance 𝑟 for 

varying delay 𝜉 between pulse emission and exposure time of the camera.  

For the time slicing method, a sequence of 𝑁 images 𝐼𝑖 for 𝑖 ∈ 1,2, … , 𝑁 with gate delay increased from 𝜉0 

in steps ∆𝜉 has to be recorded, resulting in a sampled version of the GDP. The depth 𝑟̂ of an object can be 

computed by a conventional weighted average method 

𝑟̂ =  
𝑐0

2
(∆𝜉 + ∆𝜉

∑ 𝑖𝐼𝑖𝑖

∑ 𝐼𝑖𝑖
+

𝑡𝐺

2
) 

where 𝑡𝐺 is the gate duration.  
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The time-slicing method requires a Gaussian laser pulse shape and a large number of gated images for 

sampling a small range at close distances. Increasing the range of depth estimation would require many 

more images or else result in lower accuracy. Therefore, high accuracy and large depth of field cannot be 

realized simultaneously. 

6.3.1 Super-resolution depth mapping 

Since time slicing requires a large number of images for sampling the gated delay profile, super-resolution 

methods has been introduced by Laurenzis et al. [26] [27]. This method relies on trapezoidal RIPs with 

equidistant rising, plateau, and falling sections that systematically overlap, see Figure 6.4. By comparing the 

intensity of the plateau 𝐼𝑝𝑙𝑎𝑡𝑒𝑎𝑢,𝑖 of image 𝑖 with the intensity within the linear rising ramp 𝐼𝑟𝑖𝑠𝑖𝑛𝑔,𝑖+1 of the 

following image 𝑖 + 1, the depth 𝑟̂ can be estimated by  

𝑟̂ = 𝑟0 +
𝐼𝑟𝑖𝑠𝑖𝑛𝑔,𝑖+1

𝐼𝑝𝑙𝑎𝑡𝑒𝑎𝑢,𝑖
∆𝑟 

With 𝑟0 being the start of the first slice and ∆𝑟 =
𝑐0∆𝜉

2
 the scanning step given by the delay step ∆𝜉. The 

same equation can be set up for the intensity of a linear falling ramp 𝐼𝑓𝑎𝑙𝑙𝑖𝑛𝑔,𝑖−1 of the previous image 𝑖 −

1 by 

𝑟̂ = 𝑟0 +
𝐼𝑓𝑎𝑙𝑙𝑖𝑛𝑔,𝑖−1

𝐼𝑝𝑙𝑎𝑡𝑒𝑎𝑢,𝑖
∆𝑟. 

 

Figure 6.4: Example of the super-resolution method with three gated images shifted by ∆r. 

6.4 Gain Modulation 

Gain modulation relies on two gated images, one with constant gain𝑔1(𝑡) = 𝐺1𝑔(𝑡) and one with linearly 

increasing gain 𝑔2(𝑡)  =  (𝐺2 +  𝑘𝑡) 𝑔(𝑡) with linear coefficient 𝑘. The depth 𝑟̂ for each pixel can be 

calculated from two images 𝐼1 and 𝐼2 with delay 𝜉 by  

𝑟̂ = 𝑟0 + 𝛼(
𝐼1

𝐼2
− 𝛽) 

where 𝑟0 =
𝑐0

2
(𝜉 + 𝑡𝑙). The coefficients 𝛼 and 𝛽 can be calibrated from at least two targets with known 

distances. 
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6.5 Neural network based depth estimation from gated images 

Accurate depth recovery from gated images requires the recording of high-contrast images at every 

distance. For this purpose, the gated settings should be adapted flexibly to any scene. For example, more 

photons should be captured when recording more distant areas since the reflected energy of the laser 

pulse decreases quadratically with the distance. Hence, the gate duration should be increased for further 

ranges to provide high contrast images even at long distances. However, the flexible adaption of the gated 

settings is not feasible with the pre-mentioned methods since they have pre-defined conditions for pulse 

shape, gate shape, or delay times. 

Introducing neural networks enables unrestricted depth reconstruction from gated images with arbitrarily 

modulated gated profiles. Therefore, the neural networks are trained to learn the mapping between 

intensity values of different gated slices and a depth value, independent of the gated settings. Figure 6.5 

shows that this can be accomplished either pixel-based [31] or image-based [30]. 

 

Figure 6.5: Comparison of a pixel-based and image-based system for gated depth estimation. The pixel-
based network estimates the depth from a set of three pixels, while the image-based network derives the 
depth from three complete gated images. 

6.6 Pixel-based gated depth estimation 

Gruber et al. [30] was the first to take advantage of neural networks for learning the RIPs of given gated 

images in order to map the intensity values of different images to the corresponding depth. The proposed 
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neural network receives the pixel intensity values of three gated images, captured with overlapping RIPs, as 

input and outputs the corresponding depth value. The depth supervision of the learning process is provided 

by a LiDAR system. A simple multilayer neural network constitutes the fundamental of this method. Since 

the learning process of the neural network is pixel-based, saturated and non-illuminated pixels must be 

filtered out for the training and the evaluation, as they do not provide any depth information. 

6.6.1 Image-based gated depth estimation 

In contrast to pixel-based gated depth estimation, image-based methods use convolutional-neural 

networks and complete gated images as input to predict dense depth maps. The main advantage of image-

based approaches is that pixels are not considered individually and semantic context across the gated 

images is taken into account. This facilitates the depth prediction of saturated and non-illuminated pixels. 

The learning process of the neural network is supervised by LiDAR measurements.   

6.7 Self-Supervised Gated Depth Estimation  

Previous neural network based gated depth estimation methods require LiDAR measurements for 

supervising the learning process. However, training neural network with sparse LiDAR ground truth depth is 

a challenging task since the loss function gets only evaluated at the individual LiDAR points, meaning that 

wrong predictions for unlabelled pixels are not penalized. This does not have that strong impact in terms of 

uniformly distributed sparsity labels since all pixels are still trained equally after a sufficient number of 

iterations. However, LiDAR measurements exhibit horizontal structures that occur due to the rotating 

scanning setup. Consequently, pixels lying on these horizontal lines are trained more often than pixels in 

between, which results in horizontal stripes in the predicted depth maps. This occurrence is shown in 

Figure 6.6. Furthermore, gated depth estimation supervised by LiDAR systems are limited to clear weather 

conditions. The reason for this is that LiDAR measurements suffer from backscatter in adverse weather. 

This backscatter falsifies the measurements and is visualized in Figure 6.6. Another disadvantage of ground 

truth LiDAR systems is that they only provide reliable depth measurements for ranges up to 100m, meaning 

that the evaluation of the depth estimates of the gated images is not feasible for far distances.  

 

 

Figure 6.6: Problems of using LiDAR systems as ground truth supervision for training neural networks: Low 
spatial resolution of the LiDAR system causes horizontal pattern in the predicted depth maps (top), LiDAR 
systems suffer from backscatter in adverse weather conditions, which falsifies the ground truth 
measurements (bottom). 
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This is the reason why we want to develop a self-supervised gated depth estimation approach within the 

AI-SEE project that does not require any ground truth sensor for supervision. The main idea of this 

approach is to train a neural network self-supervised by reconstructing the input gated images with the 

known RIPs. Figure 6.7 visualizes the basic principle of the self-supervised network training. The encoder-

decoder convolutional neural network is trained to predict simultaneously depth 𝑟̂, albedo 𝛼̂, and ambient 

illumination Λ̂ from a set of three gated images 𝑍 = [𝑧1, 𝑧2, 𝑧3] with overlapping RIPs. These predictions are 

required to reconstruct the input with the aid of the RIPs, defined by 

𝑍(𝑟) = 𝛷𝜄 ∫ 𝑔(𝑡 − 𝜉)𝑝 (𝑡 −
2𝑟

𝑐
) 𝛽(𝑟)𝑑𝑡 + 𝛷𝜅 ∫ 𝑔(𝑡 − 𝜉)𝑑𝑡 

∞

−∞

  
∞

−∞

 

=  𝛼𝐶(𝑟) + Λ 

Thus, a single gated image with index 𝑖 can be simulated by 

𝑧𝑖̂ =  𝛼̂𝐶𝑖(𝑟̂) + Λ̂. 

Thereby, the functions 𝐶𝑖(𝑟) with 𝑗 = 1,2,3 are measured experimentally with calibrated targets and 

approximated with Chebyshev polynomials 𝑇𝑛 

𝑇0 = 1, 𝑇1 = 𝑥, 𝑇𝑛+1  =  2𝑥𝑇𝑛 − 𝑇𝑛−1 

up to order of 𝑁 = 6. 

 

Figure 6.7: Basic principle of a self-supervised gated depth estimation approach. By simultaneously 
predicting depth, albedo, and ambient illumination, the input gated image can be reconstructed and the 
absolute error with respect to the real gated images is measured to train the network self-supervised.  

A first version of the self-supervised gated depth estimation approach has already been implemented. 

Currently, this network is being optimized. First results of this approach will be presented in the next 

deliverable D4.2. 
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7 Robust 3D Detector for Adverse Weather based on a Gated 
Camera 

7.1 Reference Methods  

Today’s state-of-the-art methods for 3D object detection are based on LiDAR, stereo, or monocular 

cameras. LiDAR-based methods achieve the best accuracy, but have a large footprint, high cost, and 

mechanically-limited angular sampling rates, resulting in low spatial resolution at long ranges. For instance, 

Figure 7.1 shows examples of a state-of-the art LiDAR-based 3D object detection method [32]. Due to low 

spatial resolution at long distances, only a few LiDAR points are captured, which makes the detection of 

objects difficult at those ranges. 

 

Figure 7.1: LiDAR-based object detection methods struggle at long distance ranges due to low LiDAR 
resolution at those ranges. 

Recent approaches based on low-cost monocular or stereo cameras promise to overcome LiDAR-based 

methods limitations but struggle in low-light or low-contrast regions as they rely on passive CMOS sensors. 

Figure 7.2 shows some examples of RGB images in low light conditions.  
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Figure 7.2: Cameras based on passive CMOS sensors struggle to generate high contrast images in low 
illumination conditions. 

7.2 Architecture of our Gated3D Approach 

Within the framework of AI-SEE, we have developed a novel approach for detecting 3D objects from 

temporal illumination cues in gated images. 

Given three gated images, the proposed network determines the 3D location, dimensions, orientation, and 

class of the objects in the scene. Figure 7.3 shows an example of three input gated slices, a color-coded 

image by concatenating the gated slices (red being the close-range slice 1), the birds-eye-view of the 

detection output and a synchronized RGB image. 

 

Figure 7.3: Gated3D for 3D object detection from gated images. 

The proposed architecture is illustrated in Figure 7.4. Our model is composed of a 2D detection network 

[33], and a 3D detection network designed to effectively integrate semantic, contextual, and depth 

information from gated images. The model is trained end-to-end using only 3D bounding box annotations 

with no additional depth supervision.  

In this architecture, the 2D detector predicts bounding boxes that guide the feature extraction using a 

ResNet3 backbone. These boxes are also used to estimate frustum segments that constrain the 3D location 

                                                           

3 ResNet, short for Residual Networks is a classic neural network used as a backbone for many computer vision tasks. 
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prediction. In addition to these geometric estimates, the 3D detection network receives the cropped and 

resized regions of interest extracted from both the input gated slices and the backbone features. To extract 

contextual, semantic and depth information from the temporal intensity variations of the gated images, our 

3D detection network applies two separate convolution streams: one for the backbone features and 

another for the gated input slices. The resulting features are fed into a sequence of fully-connected layers 

that predict the 3D location, dimensions, and orientation of the objects. 

 

Figure 7.4: Gated 3D architecture. From three gated slices, the proposed Gated3D architecture detects 
objects and predicts their 3D location, dimension and orientation. Our network employs a 2D detection 
network to detect ROIs. The resulting 2D boxes are used to crop regions from both the backbone network 
and input gated slices. Our 3D network estimates the 3D object parameters using a frustum segment 
computed from the 2D boxes and 3D statistics of the training data. The network processes the gated slices 
separately, then fuses the resulting features with the backbone features and estimates the 3D bounding 
box parameters. 

Our 3D prediction network fuses the extracted features from both the input gated slices and the backbone 

features. The gated stream extracts depth cues from the cropped gated input slices with a sequence of 

convolutions per slice, without parameter sharing. These convolutions consist of three layers with 3 × 3 × 

16, 3 × 3 × 32 and 3 × 3 × 32 kernels. The network fuses the three gated features and the backbone features 

by concatenating along the channel dimension and processing with 5 residual layers. Instead of pooling or 

flattening the resulting features, an attention sub-network produces softmax attention maps for each 

feature channel which are used for a weighted sum over the height and width of the features. The resulting 

feature vectors are fed into two fully connected layers, followed by a final layer that generates eight 3D 

bounding box coefficients.  

We denote an object’s predicted 2D bounding box as 𝑃 = (𝑐, 𝑢, 𝑣, ℎ𝑢, 𝑤𝑣), where 𝑐 is object’s class, (𝑢, 𝑣) is 

the bounding box center, and (ℎ𝑢, 𝑤𝑣) define its height and width, respectively. The 3D detection network 

takes 𝑃 and estimates a set of parameters 𝑄, that define a 3D bounding box whose projection is given by 𝑃. 

The problem of estimating 𝑄 is ill-posed as given a specific 2D bounding box 𝑃, there are an infinite number 

of 3D boxes that can be projected to 𝑃. However, we can restrict the range of locations of 𝑄 to a segment 

of the 3D viewing frustum extracted from 𝑃, using the object’s approximate dimensions and 𝑃. See Figure 

7.5 for an illustration. 
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Figure 7.5: There is an infinite number of 3D cuboids that can project to a given bounding box P. However, 
the object lo- cation can be reasonably estimated using the object height, its projected height, and the 
vertical focal length. 

For each 2D bounding box 𝑃 =  (𝑐, 𝑢, 𝑣, 𝑤_𝑢, ℎ_𝑣) generated by the 2D detection network, our 3D 

bounding box network is trained to estimate the parameters 𝑄′ =  (𝛿𝑢′, 𝛿𝑣′, 𝛿𝑧′, 𝛿ℎ′, 𝛿𝑤′, 𝛿𝑙′, 𝜃′), which 

encode the location (𝑥, 𝑦, 𝑧), dimensions (ℎ, 𝑤, 𝑙), and orientation (𝜃′) of a 3D bounding box as discussed 

in the following. 

7.3 3D Location 

We estimate the objects location (𝑥, 𝑦, 𝑧) using its projection over the image space, as well as a frustum 

segment. Specifically, we define the target 𝛿𝑢′, 𝛿𝑣′ values as  

δ𝑢′ = (𝑃𝑟𝑜𝑗2𝑑𝑢(𝑥, 𝑦, 𝑧) − 𝑢)/𝑤𝑢 

𝛿𝑣′ = (𝑃𝑟𝑜𝑗2𝑑𝑣(𝑥, 𝑦, 𝑧) − 𝑣)/ℎ𝑣 

Where Proj2du(x, y, z), Proj2dv(x, y, z) represent the coordinates of the 2D projection of (𝑥, 𝑦, 𝑧) over the 

image space.  

To define the target 𝑧, we first define a frustum segment used as a reference for depth estimation. Given 

an object with height ℎ, we can estimate the object distance to the camera with focal length 𝑓𝑣 as  

𝑓(ℎ𝑣 , ℎ) =
ℎ

ℎ𝑣
𝑓𝑣 

If we assume that ℎ follows a Gaussian distribution with mean 𝜇ℎ and standard deviation 𝜎ℎ, given 𝑃 =

(𝑐, 𝑢, 𝑣, 𝑤𝑢, ℎ𝑣) and 𝑓𝑣, we can constrain the distance from the object to the camera to a range of 

[𝑓(ℎ𝑣, 𝜇ℎ − 𝜎ℎ), 𝑓(ℎ𝑣, 𝜇ℎ + 𝜎ℎ)], or, more generally, we deduct that the frustum segment [32] has a 

length 𝑑  

𝑑 = 𝑓(ℎ𝑣 , 𝜇ℎ + 𝑘 ∗ 𝜎ℎ) − 𝑓(ℎ𝑣 , 𝜇ℎ − 𝑘 ∗ 𝜎ℎ) 

where 𝑘 is a scalar that adjusts the segment extent and is inversely proportional to our prediction 

confidence.  

Following these observations, the 𝑧 coordinate of the 3D bounding box, 𝛿𝑧’, is given as  
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𝛿𝑧′ =
𝑧 − 𝑓(ℎ𝑣 , ℎ)

𝑑
 

Note that learning 𝛿𝑧′ instead of the absolute depth 𝑧 has the advantage that the target value includes a 

good depth estimation as prior and it is normalized by 𝑑, which varies according to the distance from the 

object to camera. We have found this normalization is the key to estimate the absolute depth of the 

objects. Intuitively, for higher distances there is a greater localization uncertainty in the labels and as such, 

the training loss needs to account for this proportionally. Analogous to 2D detectors, this frustum segment 

can also be considered as an anchor, except its position and dimensions are not fixed, instead using the 

camera model and object statistics to adjust accordingly.  

During training, we use h from ground-truth and during inference, we use the network prediction.  

7.4 3D Box Dimensions and Orientation 

The target 3D box dimensions are estimated using 𝛿ℎ′, 𝛿𝑤′, 𝛿𝑙′, which are defined as the offset between the 

mean of the objects dimensions, per class, and the true dimensions: 

𝛿𝑝′ =
𝑝 − 𝜇𝑝

𝜇𝑝
, ∀𝑝 ∈ {ℎ, 𝑤, 𝑙} 

To learn the target orientation (observation angle) θ′, the orientation is encoded as (𝑠𝑖𝑛𝜃′ , 𝑐𝑜𝑠𝜃′), and the 

network is trained to estimate each parameter separately.  

7.5 Loss Functions 

Given a 3D box parameters prediction 𝑄 = (𝛿𝑢, 𝛿𝑣, 𝛿𝑧, 𝛿ℎ, 𝛿𝑤, 𝛿𝑙, 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃), and its corresponding 

ground-truth box 𝑄′ =  (𝛿𝑢′, 𝛿𝑣′, 𝛿𝑧′, 𝛿ℎ′, 𝛿𝑤′, 𝛿𝑙′, 𝜃′), we define our overall loss ℒ3𝐷(𝑄, 𝑄′) as  

ℒ3𝐷(𝑄, 𝑄′) = 𝛼 ∗ ∑ 𝐿𝑙𝑜𝑐(𝛿𝑙 − 𝛿𝑙′)

𝑙 ∈ {𝑢,𝑣,𝑧}

+ ∑ 𝐿𝑑𝑖𝑚(𝛿𝑑 − 𝛿𝑑′)

𝑑∈{ℎ,𝑤,𝑙}

+  𝛽 ∗  𝐿𝑜𝑟𝑖(𝑠𝑖𝑛𝜃′ , 𝑐𝑜𝑠𝜃′ , 𝜃′) 

where 𝐿𝑙𝑜𝑐 is the location loss, 𝐿𝑑𝑖𝑚 is the dimensions loss, and 𝐿𝑜𝑟𝑖(𝜃, 𝜃′) is the orientation loss. We use α 

and 𝛽 to weigh the location and orientation loss, and define these values during training. We define 𝐿𝑙𝑜𝑐 

and 𝐿𝑑𝑖𝑚 as 𝑆𝑚𝑜𝑜𝑡ℎ − 𝐿1, and 𝐿𝑜𝑟𝑖(𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃, 𝜃′) as  

𝐿𝑜𝑟𝑖(𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃, 𝜃′) = (𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛(𝜃′))2 + (𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠(𝜃′))2 

The method runs at approximately 10 FPS on an Nvidia RTX 2080 GPU in TensorFlow without 

implementation optimization such as TensorRT.  

7.6 Results 

We validate the proposed method on real-world driving data acquired with a prototype system in 

challenging automotive scenarios [8]. Table 7.1 shows Car and Pedestrian AP for 2D, 3D and BEV detection 

on the test set. These results demonstrate the utility of gated imaging for 3D object detection. Consistent 

with prior work [34] both the monocular and stereo baselines show a drop in performance with increasing 
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distance. Monocular and stereo depth cues for a small automotive baseline of 10-30cm are challenging to 

find with increasing range.  

The proposed Gated3D method offers a new image modality between monocular, stereo and LiDAR 

measurements. The results demonstrate an improvement over intensity-only methods, especially for 

pedestrians and at night. Gated3D excels at detecting objects at long distances or in low-visibility situations. 

Note that pseudo-LiDAR and stereo methods can be readily combined with the proposed method — a 

gated stereo pair may capture stereo cues orthogonal to the gated cues exploited by the proposed method.  

Figure 7.6 shows qualitative examples of our proposed method and state-of-the-art methods. The color-

coded gated images illustrate the semantic and space information of the gated data (red tones for closer 

objects and blue for farther away ones). Our method accurately detects objects even in difficult visibility 

conditions at both short and long distances. It significantly outperforms other state-of-the-art methods, 

such as those mentioned in the introduction, which have difficulties, especially in safety-critical applications 

such as detecting pedestrians at night or in adverse weather conditions. 

Table 7.1: Object detection performance over Gated3D dataset. Our method outperforms monocular, 
stereo and Pseudo-LiDAR methods (bottom part of the table) over most of the short (0-30m), middle (30-
50m) and long (50-80m) distance ranges. 
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Figure 7.6: Qualitative comparison against baseline methods. Bounding boxes from the proposed method 
are tighter and more accurate than the state-of-the-art methods. This is seen in the second image with the 
other methods showing large errors in pedestrians. 
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List of abbreviations 

ABBREVIATION MEANING 

ADS Automatic Driving System 

AUPRC Area Under Precision-Recall Curve 

BEV Bird-Eye-View 

CMOS Complementary Metal Oxide Semiconductor 

DBSCAN Density-Based Spatial Clustering of Applications with Noise  

FC-Layer Fully-Connected-layer 

FMCW Frequency-Modulated Continuous-Wave 

FPGA Field-Programmable Gate Array  

GDP Gated Delay Profile 

IMU Inertial Measurement Unit 

LiDAR Light Detection and Ranging 

MIMO Multiple Input-Multiple Output 

NIR Near InfraRed 

RADAR Radio Detection and Ranging 

RANSAC RANdom SAmple Consensus 

ResNet Residual Networks 

RGB Red Green Blue 

RIP Range-Intensity-Profile 

ROS Robot Operating System 

SNR Signal-to-noise ratio 

ToF Time-of-Flight 
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