

EUROPEAN RESEARCH PROJECT AI-SEE: ARTIFICIAL INTELLIGENCE TO IMPROVE VEHICLE VISION FOR AUTOMATED DRIVING IN POOR VISIBILITY CONDITIONS – OVERVIEW AND LATEST RESULTS.

Summer School Porto Heli

Dr. Werner Ritter Mercedes-Benz AG

06.09.2023

https://www.ai-see.eu/

Motivation

Architecture of the AI-SEE platform

Components of the platform

Project duration 01.06.2021 to 31.12.2024

HOW CAN WE ENSURE THAT **AUTOMATED VEHICLES DRIVE RELIABLY** EVEN IN ADVERSE WEATHER CONDITIONS?

THE GOAL

Develop a robust and fault-tolerant novel sensing technology and associated AI

Enable automated driving in all relevant weather & lighting conditions (snow, heavy rain, fog)

Permit safe driving **24h/365-days**

THE CHALLENGE

• Currently commercialization of automated vehicles is dificult due to their inability to drive under any relevant weather and lighting conditions.

• Testing takes place in **small designated areas with good** weather conditions.

Prototypes **struggle or completely fail** in adverse weather.

THE CHALLENGE

Mandatory: For safety reason as a minimum, the L3 system must be able to detect and delegate the driving task back to the driver on time if inoperability is foreseeable:

Next Generation L3 systems The AD System is liable!

The system must independently detect its inoperability in e.g. adverse weather! and inform the driver to take over

The system should (somehow) work even in adverse weather for safety and availability reasons

A SEE

IT NEVER RAINS IN CALIFORNIA BUT CERTAINLY AROUND IT IN THE WORLD

CALIFORNIA ISSUES PERMITS TO CRUISE, WAYMO FOR AUTONOMOUS VEHICLE SERVICE, BUT

WASHINGTON, FEB 28 (REUTERS) 2022 - THE CALIFORNIA PUBLIC UTILITIES COMMISSION (CPUC) ON MONDAY ISSUED PERMITS TO SELF-DRIVING UNITS OF GENERAL MOTORS (GM.N) AND ALPHABET INC (GOOGL.O) TO ALLOW FOR PASSENGER SERVICE IN AUTONOMOUS VEHICLES WITH SAFETY DRIVERS PRESENT.

STARTING MONDAY, CRUISE IS ALLOWED TO PROVIDE THE "DRIVERED DEPLOYMENT" SERVICE ON SOME PUBLIC ROADS IN SAN FRANCISCO BETWEEN THE HOURS OF 10 P.M. AND 6 A.M. AT SPEEDS OF UP TO 30 MILES PER HOUR, WHILE WAYMO CAN OFFER SERVICE IN PARTS OF SAN FRANCISCO AND SAN MATEO COUNTIES AT SPEEDS OF UP TO 65 MILES PER HOUR, CPUC SAID. NEITHER COMPANY IS ALLOWED TO OPERATE DURING HEAVY FOG OR HEAVY RAIN.

LIDAH Sensors on CHUISE s and Waymo's autonomous =test vehicles

FOG BROUGHT 5 ADS WAYMO VEHICLES TO A HALT IN THE MIDDLE OF THE ROAD

San Francisco Chronicle, April 11, 2023

BAY AREA

Waymo says dense S.F. fog brought 5 vehicles to a halt on Balboa Terrace street

 Foggy conditions prompted the software of multiple autonomous vehicles to stop on San Aleso Avenue in San Francisco early Tuesday morning, blocking traffic for several minutes.
 Gene Vala

Five <u>self-driving vehicles</u> blocked traffic early Tuesday morning in the middle of a residential street in <u>San</u> <u>Francisco's</u> Balboa Terrace neighborhood, apparently waylaid by fog that draped the southwestern corner of the city.

The software-powered convoy had run into "very dense fog and determined they should pull over temporarily," Waymo spokesperson Chris Bonelli said, explaining how five of the company's cars wound up clogging a right lane of San Aleso Avenue down to the crosswalk, with one car straddling the center lane. They moved on after the fog cleared, which, according to bystanders, took several minutes. Waymo is planning software updates to "improve our fog and parking performance to address such situations in the future," Bonelli said.

Baffled motorists flashed headlights and tried to maneuver around the jam, which occurred shortly before 6 a.m. — <u>the latest traffic disruption</u> by seemingly ubiquitous robotaxis that treat San Francisco streets as a testing ground. One resident who began snapping cell phone photos saw the cars were outfitted with cameras and sensors, and that a rear passenger door bore the all-caps logo for Waymo, a Mountain View company that began as Google's self-driving car project.

"They were just idling," Balboa Terrace resident Gene Valla said, describing how he encountered the hightech fleet while trying to make a right-hand turn from Monterey Boulevard onto San Aleso Avenue. Impeded by the vehicle in the intersection, Valla blinked his headlights, then got out of his car to investigate. When he peered into the window, he saw no one in the driver's seat.

By that point, another driver was heading the other way down San Aleso, shining headlight beams as he gingerly squeezed past the cluster of autonomous cars. Valla gave up, backed out of the intersection and drove around the block to park in front of his house. He estimated the self-driving cars were halted for at least six minutes before he saw the first one glide away.

A spokesperson for the San Francisco Municipal Transportation Agency said the city is compiling reports of road disturbances by autonomous vehicles, though officials have no "systemic data." Although the SFMTA frequently fields complaints about autonomous vehicles, the California Public Utilities Commission regulates them.

CURRENTLY INSTALLED SENSORS DEGRADE STRONGLY IN ADVERSE WEATHER CONDITIONS !

- Stereo camera only short visibility and invisible pedestrians next to a blinding car headlight
- Our development: Gated camera larger visibility and less problems with backscattering/airlight
- Lidar lots of reflections directly in front
- Pedestrians at a distance of a m from the vehicle can not be

COULD WE ALLOW TO DRIVE A CAR BLIND?

Just for 10 seconds (= min. return time for SAE L3)?? Just for 278 m at a speed of 100km/h (60 mph) Just for the length of 3 soccer fields

Definitely NOT !!!! Not even once !!!!

... or 1083 m in 30 sec at a speed of 130km/h (80 mph)

ADVERSE WEATHER HAPPENS IN EU A WAY OFTEN THAN WE THINK

Annual averages for rainfall plus snowfall (EU major cities)

				-							
Days	City	Inches	Millimetres	Days	City	Inches	Millimetres	Days	City	Inches	Millimetres
132	Amsterdam, Netherlands	33.0	838	152	Leeds, United Kingdom	40.3	1024	148	Reykjavík, Iceland	31.4	798
119	Andorra la Vella, Andorra	37.5	952	127	Lille, France	29.2	743	120	Riga, Latvia	25.0	636
43	Athens, Greece	14.4	365	77	Lisbon, Portugal	28.6	726	78	Rome, Italy	31.4	799
55	Barcelona, Spain	25.2	640	115	Ljubljana, Slovenia	53.9	1368	86	Rostov-on-Don, Russia	23.4	595
				109	London, United Kingdom	21.9	557	131	Rotterdam, Netherlands	33.7	856
95	Belgrade, Serbia	27.2	691	122	Luxembourg Luxembourg	34.5	876	119	Saint Petersburg, Russia	24.9	633
106	Berlin, Germany	22.5	571	122	Eaxembourg, Eaxembourg	54.5	010	115	Sumer eccroburg, Russia	21.5	000
				104	Lyon, France	32.8	832	95	Samara, Russia	22.1	561
125	Birmingham, United Kingdom	26.8	681	63	Madrid Spain	17.2	436	76	San Marino San Marino	25.8	655

Rain and snowfall in EU >100 days per year

(calculation includes only days with precipitation at least one mm (0.04 inches).

!L3 System predictive detection & availability in bad weather is imperative for succesfull market introduction and deployment of the AD systems!

170	Glasgow, Onited Kingdom	44.3	1124	110	Niekau & Neuroped Durate	22.0	550	0.4)/-llabba Malba	21.0	550
120	Hamburg Germany	30.4	773	112	Nizhny & Novgorod, Russia	22.0	338	84	Valletta, Malta	21.8	222
125	numburg, Germany	50.4	115	68	Odessa, Ukraine	18.3	464	98	Vienna, Austria	25.6	651
115	Helsinki, Finland	26.9	682	113	Oslo, Norway	30.0	763	122	Vilnius, Lithuania	26.9	683
84	İstanbul, Turkey	31.7	805	111	Paris France	25.1	637	73	Volgograd Russia	15.9	403
101	Kazan Bussia	21.6	540		rans, rrance	23.1	0.57	15	volgograd, Rassia	13.5	105
101	Kdzdil, Kussid	21.0	540	101	Podgorica, Montenegro	65.4	1661	93	Warsaw, Poland	20.3	515
81	Kharkiv, Ukraine	20.7	525	94	Prague, Czech Republic	20.7	526	95	Zagreb, Croatia	33.1	840
99	Kiev, Ukraine	25.6	649	120	Pristina, Kosovo	23.5	598	125	Zurich, Switzerland	41.2	1048

FOG IS ALSO NOT RARE (E.G. IN THE US)

Annual averages for days with cloud or fog (major cities in the United States)

City	Cloud	Fog	City	Cloud	Fog	City	
Atlanta, Georgia	149	159	Jacksonville, Florida	144	198	Portland, Oregon	
Austin, Texas	136	127	Kansas City, Missouri	149	123	Providence, Rhode Island	
Baltimore, Maryland	152	144	Las Vegas, Nevada	73	5	Palaigh North Carolina	
Birmingham, Alabama	155	178	Los Angeles, California	103	92	Kaleigit, North Carolina	
Boston, Massachusetts	164	139	Louisville, Kentucky	171	142	Richmond, Virginia	
						Deelersten New Verle	

Fog in the US >100 days per year for major cities in US

Inclement weather is not a rare occurrence worldwide. It occurs particularly strongly and frequently at night.

!L3 System predictive detection & availability in bad weather is imperative for succesfull market introduction and deployment of the AD systems!

Detroit, Michigan	185 156	Orlando, Florida	130 157		
Hartford, Connecticut	175 162	Philadelphia, Pennsylvania	160 164	Tampa, Florida	121 133
Houston, Texas	161 194	Phoenix, Arizona	70 7	Virginia Beach, Virginia	153 157
Indianapolis, Indiana	179 175	Pittsburgh, Pennsylvania	203 183	Washington, DC	164 130

NEW UN REGULATION SINCE JAN. 2023: AUTOMATED LANE KEEPING SYSTEM MUST CONSIDER WEATHER

Economic and Social Council Distr.: General 30 May 2022 Original: English Original: English Economic Commission for Europe Inland Transport Committee World Forum for Harmonization of Vehicle Regulations Isometry of the provisional agenda 1988 Agreement: Consideration of draft amendments to existing UN Regulations submitted by GRVA UN Regulations	United Nations	ECE/TRANS/WP.29/2022/59/Rev.1
Original: English Economic Commission for Europe Inland Transport Committee World Forum for Harmonization of Vehicle Regulations 187th session Geneva, 21-24 June 2022 Item 4.8.2 of the provisional agenda 1958 Agreement: Consideration of draft amendments to existing UN Regulations submitted by GRVA	Economic and Social Council	Distr.: General 30 May 2022
Economic Commission for Europe Inland Transport Committee World Forum for Harmonization of Vehicle Regulations 187th session Geneva, 21-24 June 2022 Item 4.8.2 of the provisional agenda 1958 Agreement: Consideration of draft amendments to existing UN Regulations submitted by GRVA		Original: English
Economic Commission for Europe Inland Transport Committee World Forum for Harmonization of Vehicle Regulations 187th session Geneva, 21-24 June 2022 Item 4.8.2 of the provisional agenda 1958 Agreement: Consideration of draft amendments to existing UN Regulations submitted by GRVA		
Economic Commission for Europe Inland Transport Committee World Forum for Harmonization of Vehicle Regulations 187th session Geneva, 21-24 June 2022 Item 4.8.2 of the provisional agenda 1958 Agreement: Consideration of draft amendments to existing UN Regulations submitted by GRVA		
Inland Transport Committee World Forum for Harmonization of Vehicle Regulations 187th session Geneva, 21-24 June 2022 Item 4.8.2 of the provisional agenda 1958 Agreement: Consideration of draft amendments to existing UN Regulations submitted by GRVA	Economic Commission for Europe	
World Forum for Harmonization of Vehicle Regulations 187th session Geneva, 21-24 June 2022 Item 4.8.2 of the provisional agenda 1958 Agreement: Consideration of draft amendments to existing UN Regulations submitted by GRVA	Inland Transport Committee	
187th session Geneva, 21-24 June 2022 Item 4.8.2 of the provisional agenda 1958 Agreement: Consideration of draft amendments to existing UN Regulations submitted by GRVA	World Forum for Harmonization of Vehicle Regulations	
	187th session Geneva, 21-24 June 2022 Item 4.8.2 of the provisional agenda 1958 Agreement: Consideration of draft amendments to existing UN Regulations submitted by GRVA	

Proposal for the 01 series of amendments to UN Regulation No. 157 (Automated Lane Keeping Systems)

Submitted by the Working Party on Automated/Autonomous and Connected Vehicles*

5.2.3.2. The activated system shall adapt the vehicle speed to infrast ructural and environmental conditions (e.G. Narrow curve radii, incl ement weather)

"Automated lane keeping system (ALKS)" is a system which is activated by the driver and which keeps the vehicle within its lane for travelling speed of 130 km/h or less by controlli ng the lateral and longitudinal movements of the vehicle for extended periods without the need for further driver input.

2.1. "Operational design domain (ODD)" of the automated lane keeping system defines the specific operating conditions (e.G. Environmental, geographic, time-of-day, traffic, infrastr ucture, speed range, weather and other conditions) within the boundaries fixed by this reg ulation under which the automated lane keeping system is designed to operate without an y intervention by the driver.

2.8 "operational design domain (ODD)" of the automated lane keeping system defines the specific operating conditions (e.G. Environmental, geographic, time-of-day, traffic, infrastr ucture, speed range, weather and other conditions)

2.9. "Operational design domain (ODD)" of the automated lane keeping system defines the specific operating conditions (e.G. Environmental, geographic, time-of-day, traffic, infrastr ucture, speed range, weather and other conditions) within the boundaries fixed by this reg ulation under which the automated lane keeping system is designed to operate without an y intervention by the driver.

2.11. "Control strategy" means a strategy to ensure robust and safe operation of the functi on(s) of "the system" in response to a specific set of ambient and/or operating conditions (such as road surface condition, traffic intensity and other road users, adverse weather con ditions, etc.). This may include the automatic deactivation of a function or temporary perfo rmance restrictions (e.G. A reduction in the maximum operating speed, etc.).

UN REGULATION EXTENDS AUTOMATED DRIVING UP TO 130 km/h IN CERTAIN CONDITIONS

- Revised UNECE regulation R157 for automated lane keeping systems (ALKS) entered into force on 1 jan 2023 for all contracting countries (42).
 - Allows OEMs to legally provide customers with ALKS (SAE Level 3 up to 130 km/h for "Minimum forward detection range")
 - "A passable object is such an object, that may be driven over without causing an unreasonable risk to the vehicle occupants or other road users regardless of whether the tyre of the ALKS vehicle comes in contact with the object or not."
 - ALKS can only operate in conditions that allow bigger than "passable object" to be detected

Min iFoV angle a= 0.15/150 = 1 mRAD (~0.057 degree) • Challenging with current Lidar

Min iFoV angle a= 0.15/100 = 1.5 mRAD (~0.086 degree) Challenging with current Lidar

LIMITATIONS OF LIDAR

PANDAR 128 (128 CHANNELS) (CURRENTLY HIGHEST RESOLUTION ON MARKET)

Key Specifications

Data Points Generated 3,456,000 points/second (single return) 6,912,000 points/second (dual return)

Range 200 m@10%

Accuracy ±2 cm (1 to 200 m)

Functional Safety - compliant to ISO 26262 Comprehensive functional reporting for all lasers Resolution 0.1° Finest horizontal resolution (10 Hz) 0.125° Finest vertical resolution

Operating Temperature -40° ~ 85°C

Ingress Protection IP6K9K & IP6K7

Cyber Security – compliant to ISO 21434 Encryption to safeguard against data breaches

3,456,000 points/sec= 345,600 points/per scan in contrast to 2.000.000 pixels with 10Hz of a GC (5,8 times more!) $0,1^{\circ} \sim 0,26m$ Auflösung

Even if the resolution is doubled, the lost cargo cannot be reliably detected (minimum required improvement is factor 4). Traversability needs improvement of resolution > factor 6!

1st Summer School | 6.09.2023 Porto Heli | Dr. W. Ritter

20^{0m} 1.9 m 1.9 m 1.8 m 1.165 m 1.9 m 1.9 m 1.165 m 1.0 m 1.0 m 1.1 m 1.1 m 1.165 m 1.0 m 1.1 m

Results in 150m

now future

LOST CARGO PROBLEM AT NIGHT STILL UNSOLVED!

- THE MAXIMUM SPEED AT WHICH AN ADS CAN TRAVEL IS LIMITED BY THE MAXIMUM RANGE OF DETECTION OF SMAL L OBSTACLES (SO-CALLED LOST CAGO, TYPICALLY TIRES 12 CM HIGH, MOTORCYCLIST 30 CM HIGH).
- FOR A DESIRED SPEED OF 130 KM/H, THE LOST CARGO MUST BE DETECTED AT A DISTANCE OF APPROX. 150 M. IF A DI STANCE OF ONLY 100M IS ACHIEVED, THE MAXIMUM SPEED DROPS TO 80 KM/H.
- CURRENTLY, THERE IS NO SERIES SENSOR INSTALLED IN THE VEHICLE WITH WHICH THIS PROBLEM CAN BE SOLVED!
- ...BUT MAYBE SOON

LOST CARGO CASE: HIGH END COLOR CAMERA VS. GATED CAMERA

LOW BEAM, TIRE IN 155 M DISTANCE, PEDESTRIANS IN 170 M DISTANCE CLEARLY VISIBLE !

High End Color-Camera with low beam headlights: Only the first 50m are visible

Gated Camera from BWV: The tire at 155m distance can be seen well!

LOST CARGO CASE: HIGH END COLOR CAMERA VS. GATED CAMERA

LOW BEAM, TIRE IN 155 M DISTANCE, PEDESTRIANS IN 170 M DISTANCE CLEARLY VISIBLE !

High End Color-Camera with low beam headlights : Only the first 50m are visible OnSemi Aptina AR0230, resolution: 1920x1024

Gated Camera from BWV: The tire at 155m distance can be seen well! Resolution - 800x480

LOST CARGO MEASUREMENT CAMPAIGN IN THE JARI WEATHER CHAMBER

Test scenario for lost cargo distributed over 200 m weather chamber length.

Quiz: Where is the motorcyclist?

LOST CARGO MEASUREMENT CAMPAIGN IN THE JARI WEATHER CHAMBER

100,25	SQS white from the back								
110,00	S-Classe blue from the side								
110,00	Bumper								
120,00	tire								
160,00	motorcyc	motorcyclist							
170,00	wooden b	bar							
	Pedestria	n Standin	ig dark						
180,00	blue								
190.25	car Mistu	bishi							

49,00 Palette									
50,50 Tire									
60,00 Bricks									
70,00 Light Blue Doll laying perpendicular to car									
70,00 Mercedes C-K	lasse T								
80,00 Exhaust									
85,00 Plastic Box blue									
87,50 Dark Blue Doll Standing looking in front to the car									
		-	-						

A BIT HARDER: LOST CARGO > 75 M DISTANCE WITH FOG 80M VISIBILITY

Fog 80 m visibility range,

THE CONCEPT

22

ADVANTAGES OF A GATED CAMERA (COMPARED TO A STANDARD CAMERA)

Standard Camera

Fog chamber scenario with a visibility of 50m.

Gated Camera

THE GATED CAMERA DELIVERS USABLE IMAGES EVEN IN ADVERSE WEATHER CONDITIONS (EVEN W HEN NOTHING MORE CAN BE PERCEIVED WITH STANDARD CAMERAS OR STANDARD LIDARS.)

WHY IS THE IMAGE (ALMOST) OF A GATED CAMERA UNDISTURBED (BY AW)?

- With the gated camera various depth slices are illuminated and recorded. The result image is generated by adding up the depth slices.
- Why is the image (almost) undisturbed?
- Interference information (e.g. reflections on interfering particles such as snowflakes) outside of a depth range is not recorded and therefore does not interfere (overlay) the image information of interest

ADVANTAGES OF A GATED CAMERA (COMPARED TO A STANDARD CAMERA)

- Output: Estimated depth •
- Label: Lidar depth

A HIGH RESOLUTION DEPTH MAP (HERE 1280X720) WITH AN RELATIVE (TO THE DISTANCE) ACCURACY OF 5% CAN BE CALCULATED FROM THE DEPTH SLICES (*status 2020)

EXAMPLE VIDEO – DEPTH MAP 1280X720

T4.1 GATED DEPTH ESTIMATION (WORK FROM 2022)

LONG TERM GOAL (~2 YEARS):

Automatic adaption of gating parameters to environment conditions and combination of different depth cues (stereo, temporal, gated information) for accurate depth estimation

NEXT GOAL (~6 MONTHS):

• Long-range gated depth estimation with wide stereo sensor setup **WORK DONE:**

Self-supervised gated depth estimation based on gated and temporal consistency (Gated2Gated)

Setting up stereo gated camera

Optimization of gating parameters for gated depth estimation

Fig. 1: Net-Architecture of self-supervised gated depth estimation.

1st Summer School | 6.09.2023 Porto Heli | Dr. W. Ritter

Fig. 3: Long term goal: Optimization of gating parameters to prevailing conditions

Fig. 2: Results of different depth estimation methods. The proposed Gated2Gated can handle snow much better than the other methods.

Paper CVPR2022: Gated2Gated: Self-Supervised Depth Estimation from Gated Images

T4.1 GATED STEREO DEPTH ESTIMATION

Long term goal (~2 years):

- Combination of different depth cues (gated, temporal, stereo) for high accuracy depth maps
- Adaptation of gating parameters to environment conditions and task

Short term goal and ongoing (~6 months):

- Gated stereo depth estimation
- (Automatic optimizing gated parameters for prevailing conditions)

Completed work:

- Cooperation with Algolux & Princeton University for self-supervised depth estimation with temporal and gated consistency
- First collection campaigns for gated stereo data
- Optimization of gating parameters for depth estimation
- Gated Stereo achieves 50% better mean absolute depth error than the next best method on stereo RGB images

	Examples of Gated Stereo Dataset											
		A COLOR		1.1-6"					and the second			
1			AND AREAD									
					int.	100	1000	- State	and the second second			
					*		1		and the second			
		Paris -	A State of the second	Star and a star	-			······································				

Significant step toward solving novel 3D vision tasks such as detecting small objects that are easy to miss, such as debris (lost cargo) at long distances, and detecting road edges and lanes in high quality.

* Paper CVPR2023: "Gated Stereo: Joint Depth Estimation from Gated and Wide-Baseline Active Stereo Cues"

GATED STEREO DEPTH ESTIMATION - HOW IT WORKS

Input:

- Stereo pair of three active gated images with time-of-flight information
- Stereo pair of two passive HDR-like captures for good performance in bright daylight conditions, where active cues have a low signal-to-noise ratio due to ambient illumination

Method:

- Network architecture consists of one monocular network per gated camera, a stereo network, and a fusion network where monocular and stereo depth predictions get fused
- · Monocular network exploits depth-dependent gated intensity cues and stereo network relies on active stereo cues
- Network training relies on self-supervised losses that ensures consistency between different predicted outputs and sparse LiDAR ground truth supervision

Output:

• High-resolution dense depth maps

* Paper CVPR2023: "Gated Stereo: Joint Depth Estimation from Gated and Wide-Baseline Active Stereo Cues"

GATED STEREO DEPTH ESTIMATION - RESULTS

Take-away

- Gated Stereo uses three active and two additional high-dynamic range passive captures to perform robustly
 under bright daylight
- Gated Stereo generates high-resolution dense depth maps from multi-view/stereo cues and time-of-flight
 intensity cues
- Gated Stereo achieves 50% better mean absolute depth error than the next best method on stereo RGB images

Method	Modality		Night Performance					Day Performance				
		MAE	RMSE	δ1	δ2	δ3	MAE	RMSE	δ1	δ2	δ3	
Gated Stereo	Stereo-Gated	2.25	6.39	96.40	98.44	99.24	2.25	7.11	96.87	98.46	99.11	
RAFT-Stereo	Stereo-RGB	5.10	10.89	90.47	96.71	98.63	4.07	9.40	93.76	98.15	99.09	
DepthFormer	Mono-RGB	6.20	12.15	85.18	95.76	98.47	5.06	10.59	90.65	97.46	99.02	
Sparse2Dense	Mono-Sparse	5.22	9.97	87.06	95.77	98.20	4.77	10.05	88.06	96.57	98.63	

Quantitative Performance

Significant step toward solving novel 3D vision tasks such as detecting small objects that are easy to miss, such as debris (lost cargo) at long distances, and detecting road edges and lanes in high quality.

/I SEE

1st Summer School | 6.09.2023 Porto Heli | Dr. W. Ritter

* Paper CVPR2023: "Gated Stereo: Joint Depth Estimation from Gated and Wide-Baseline Active Stereo Cues"

SIGNAL ENHANCEMENT

T4.2 SIGNAL ENHANCEMENT

Long term goal (~2 years):

Generic enhancement framework which can be used as pre-processing stage for object detection algorithms.

Next goal(~6 months):

 Extending camera methods to night time or to other modalities. Depending on available simulation methods.

Work done:

• Setting up single RGB camera enhancement algorithms with temporal, multi modal, multi view supervision for optimal image quality.

Fig 3. Network Architecture

Fig 1. Original Input Images

Fig. 2 Enhanced Camera Raw Data

1st Summer School | 6.09.2023 Porto Heli | Dr. W. Ritter

Paper: ZeroScatter: Domain Transfer for Long Distance Imaging and Vision through Scattering Media. CVPR 2021

HAZED DATASET (IMAGE)

IMAGE HAZING ALGORITHM ADAPTED TO CITYSCAPES

REFINED STEREO DEPTHMAP THROUGH PSP-NET

KITTI IMAGES ARE TO BRIGHT AND THEREFORE UNREALISTIC FOG. BEFOREHAND APPLICATION OF CLAHE FOR A CO NTRAST ENHANCEMENT.

SIMULATED RAIN (SIMPLIFIED SIMULATION, RAIN IS FALLING STRAIGHT DOWN)

Rain rate 5 mm/h

1st Summer School | 6.09.2023 Porto Heli | Dr. W. Ritter

Rain rate 25 mm/h

Rain rate 100 mm/h

Typical rain rates

100mm/h autumn downpour

300 mm/h tropical rain

SIMULATED SNOWFALL (SIMPLIFIED SIMULATION, THE SNOW IS FALLING STRAIGT DOWN)

Snowfall rate 0,25 mm/h

Snowfall rate 0,5 mm/h

Typical snowfall rates:

SAE Snowfall rate for difficult flight operation 2,5 mm/h

Extreme rate up to 14 mm/h measured in USA.

Snowfall rate 1,0 mm/h

Snowfall rate 2,5 mm/h

LIDAR SIGNAL ENHANCEMENT

T4.2 IMPROVE LIDAR DETECTION IN ADVERSE WEATHER (E.G. WET ROAD, SPRAY)

Long term goal (~2 years):

Integrate temporal information over multiple frames into detectors to mitigate erroneous detections in adverse weather conditions

Short term goal and Ongoing (~6 months):

- Simulate and/or collect raw LiDAR data in adverse weather scenarios
- Improve object detection with raw LiDAR data

Completed Work:

- Cooperation with TU Darmstadt for augmenting spray and wet road effects for LiDAR point clouds based on physical models
- Improve LiDAR based detectors by using augmented training data and evaluate on a dataset with real spray

Disturbed raw LiDAR signal during rain: Strongest peak from e.g. rain drop, fog etc. Object echo is behind strongest echo

with augmentation

Detection RATE improvement of up to 17% with significant less false detections and a far better object localization

/I SEE 1st Summer School | 6.09.2023 Porto Heli | Dr. W. Ritter

> For more details see publication submitted to IEEE Sensors Journal in 2022: Simulating Road Spray in Lidar Sensor Models: Clemens Linnhoff, Dominik Scheuble, Mario Bijelic, Lukas Elster, Philipp Rosenberger, Werner Ritter, Dengxin Dai and Hermann Winner

RESULTS

Take-away

- Augmentation boosts performance in spray significantly
- Augmentation does not lead to sacrifices on clear-weather performance
- Related adverse weather simulations do not generalize well to • spray

	spray te	est set		clear-weather test set				
	0-50	0-30	30-50	0-50	0-30	30-50		
Spray aug.	75.36	81.74	67.02	58.90	71.69	44.06		
No aug.	57.97	69.75	42.11	58.23	71.33	42.54		
Rain aug.	67.71	75.82	55.05	59.23	71.77	43.88		
Fog aug.	43.32	59.07	21.25	58.59	71.73	42.40		

Average Precision (AP) for PV-RCNN [1]

[1] Shi et al, Pv-rcnn: Point-voxel feature set abstraction for 3d object detection, 2020

Detection RATE improvement of up to 17% with significant less false detections and a far better object localization!

END-TO-END LIDAR HYPERPARAMETER OPTIMIZATION

Long term goal (~2 years):

 Automatically optimize LiDAR detection across the entire process path from raw signal to detection via Deep Neural Networks to environmental conditions (from clear view to adverse weather).

Short term goal and Ongoing (~6 months):

• Application to a real / full wavefront lidar

Completed Work:

- CARLA simulation environment that can extract full wavefront data and process in a DSP model
- Development of 0-th order multi-objective (MOO) optimizer for finding optimal DSP parameters
- Optimizing DSP parameters beats manual expert-tuning
- Object detection on an End-to-End optimized point cloud with object detection (AP for cars and pedestrians) outperforms expert-tuning by 39.5% AP.

SEE 1st Summer School | 6.09.2023 Porto Heli | Dr. W. Ritter

For more details see Paper CVPR2023: "LiDAR-in-the-loop Hyperparameter Optimization"

optimized

Comparison of expert-tuned (upper) and optimized (lower) DSP. Tuning parameters by hand is difficult and tedious due to large and non-linear parameter space. Optimizing DSP parameters generates clearer point clouds and improves object detection

END-TO-END LIDAR HYPERPARAMETER OPTIMIZATION

LiDAR Simulation Method. We propose a parameterizable LiDAR simulation model that generates full transient waveforms by extracting scene response H, ambient light a and object reflectances s, d, a from CARLA. The optimized vector T includes both pulse and DSP hyperparameters. Wavefronts are processed by the DSP, resulting in a point cloud O. We "close the loop" by feeding O to 3D object detection and depth estimation methods that define loss functions L when evaluated on validation datasets. These end-to-end loss functions drive an MOO solver which converges to optimal parameters

For more details see Paper CVPR2023: "LiDAR-in-the-loop Hyperparameter Optimization"

RGB IMAGE SIGNAL ENHANCEMENT

T4.3 PHYSICALLY-BASED INVERSE NEURAL RENDERING TO REMOVE FOG

- Determine from RGB-sequences airlight, clear scene sequence, fog density, pixel-wise depth and other components (e.g. albedo, reflectance, illumination).
- Extend this approach to different sensors modalities (e.g. Gated images, LiDAR)

Next goal(~6 months):

• Extend physics-based scene representation approach to multiple settings and modalities.

Work done:

 Given a RGB sequence, separate the fog by learning a disjoint representation of clear scene and scattering medium, through the imposition of physics-based constrains.

Fig. 1: Example of reconstructed scene (original, defogged and depth)

NEW! Based only on RGB image sequences and physics knowledge about the image formation, this approach automatically determines the image components like clear image, fog, color, depth, albedo, ...

Paper: ScatterNeRF: Seeing Through Fog with Physically-Based Inverse Neural Rendering. Submitted to ICCV 2023

T4.3 PHYSICALLY-BASED INVERSE NEURAL RENDERING TO REMOVE FOG METHOD: PROBLEM FORMULATION

Main ideas:

- Employ a Neural Radiance Field algorithm, but model Fog and Scene separately
- Use physics-based losses to enforce this division

$$C(r)_{F} = \int_{t_{n}}^{t_{f}} T_{c}(t) \left(T_{p}(t)\sigma_{p}(r(t))c_{p}(r(t)) \right) + T_{p}(t) \left(T_{c}(t)\sigma_{c}(r(t))c_{c}(r(t)) \right) dt$$

$$Clear Scene contribution$$

$$L_{A} = E_{r} \left[\left| \hat{c}_{p}(r) - \bar{c}_{p}(r) \right|_{2}^{2} \right]$$

$$L_{eF} = E_{r} \left[\sum_{i} \tilde{\alpha}_{F_{i}}(r) \cdot \log\left(\tilde{\alpha}_{F_{i}}(r) \right) \right]$$

$$L_{depth} = E_{r} \left[\left| \hat{D}_{c}(r) - \bar{D}_{c}(r) \right|_{2}^{2} \right]$$

$$L_{tot} = L_{rgb} + L_{A} + L_{depth} + L_{ec} + L_{eF}$$

$$reconstruction loss airlight loss entropy loss c clear scene, F fog$$

$$4$$

T4.3 PHYSICALLY-BASED INVERSE NEURAL RENDERING TO REMOVE FOG – COMPARISON: DEFOGGING VIDEO

Comparison of proposed method (ScatterNeRF) against state-of-the-art image descattering algorithms

ScatterNeRF provides higher contrast and stronger contours and colors compared to other previous state-of-the-art defogging methods.

T4.3 PHYSICALLY-BASED INVERSE NEURAL RENDERING TO REMOVE FOG **OTHER RESULTS : MODIFICATION FOG DENSITY**

T4.3 PHYSICALLY-BASED INVERSE NEURAL RENDERING TO REMOVE FOG OTHER RESULTS : FOG CHAMBER

Example result of sequence collected in a controlled environment (JARI fog chamber)

SCENE UNDERSTANDING – 3D OBJECT DETECTION IN ADVERSE WEATHER

T4.4 SCENE UNDERSTANDING - 3D OBJECT DETECTION IN ADVERSE WEATHER

Long term goal (~2 years):

 3D Object detection methods for the defined use cases with the possibility of multi modal fusion and seamless integration of enhancement methods with a backloop adaptation.

Next goal(~6 months):

- Extending single sensing methods to temporal fusion.
- Possibility to use enhancement stage as algorithmic input.

Work done:

• Setting up single 3D object detection methods for single modalities.

x Fig 1. Gated3D used for 3D Detection of Obstacles in adverse weather

Paper: Gated3D: Monocular 3D Object Detection From Temporal Illumination Cues. ICCV 2021

Fig 3. Enhanced Camera Detections

Fig. 2. Gated3D Architecture

3D-OBSTACLE DETECTION IN ADVERSE WEATHER ... ONE MORE EXAMPLE

x (horizontal)

SEE 1st Summer School | 6.09.2023 Porto Heli | Dr. W. Ritter

50

/|

THANK YOU VERY MUCH FOR YOUR ATTENTION!

https://www.ai-see.eu/